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Abstract. The phase diagram for the q-state Potts model is constructed by means of the low- 
temperature expansion technique. An infinite set of phases appears, with the bifurcating 
structure resembling the complete Devil’s staircase. 

1. Introduction 

Classical spin systems with a layered structure of the ground state have received con- 
siderable attention for some time. The best known example is the ANNNI model [ l ] ,  
which has been studied by a variety of methods (cf the review by Selke [2]). Another 
representative is the q-state chiral clock (cc) model [3, 41. Phase diagrams for these 
two systems exhibit infinite sequences of phases springing from a zero-temperature 
multiphase critical point. The form of such a phase diagram can be described as an 
incomplete Devil’s staircase: the transition between high-temperature and low-tem- 
perature bulk phases occurs through a sequence of periodic structures with increasing 
periods. In the more complicated form, the ccimplete Devil’s staircase, any two phases 
are separated by an infinite collection of structures with higher periodicity. The phase 
diagram of this type has been found in the ANNNI model with a magnetic field [ 5 ] .  

In this report we present results of the low-temperature expansion (LTE) analysis of 
a modified version of the q-state cc model. In the formulation of the three-state cc 
model by Huse [3], the Hamiltonian is defined on the oriented simple cubic lattice by 
competing nearest-neighbour (NN) interactions: ferromagnetic and ‘chiral’. The latter 
forces spins along any (oriented) axis to have values 0, 1 , 2 ,  . . . (modulo 3). In this form 
the model cannot be analysed by the LTE technique and hence it was modified [6]: 
competing ferromagnetic and chiral interactions were preserved along some chosen 
axis while in the remaining directions, ferromagnetic bonds were imposed. The phase 
diagram for this model was studied by Yeomans and Fisher [6] (three-state cc) and by 
Yeomans [7] (q-state cc). In both cases the incomplete Devil’s staircase was found. 

In our version we keep the NN chiral bonds, but replace the NN ferromagnetic 
interaction by the next-nearest-neighbour (NNN) one. The original symmetry of the 
system is thus preserved. The Hamiltonian has an infinite number of ground states and 
yet the LTE technique can be applied. Spin is allowed to assume values 0, 1, . . . , ( q  - 1). 
This model (for q = 3) was first introduced in [8], where it served as an example for the 
LTE application to layered systems. Here we present a full account of the LTE calculations 
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for general q. The resulting phase diagram has the form of a complete Devil's staircase. 
This has been confirmed to some extent by the numerical analysis of the mean-field 
theory for the model [9]. It is worth noting that the renormalisation group treatment of 
the original model [ 3 ]  produced the phase diagram with some features of the complete 
Devil's staircase. 

Since the Hamiltonian of the system has an infinite number of ground states, some 
inductive argument has to be used. We apply the method described in [8]. The paper is 
divided into two main parts: in section 2 steps of the inductive pattern are outlined and 
results are presented while the derivations of the expansion coefficients are deferred to 
section 3 .  The phase diagram is shown in figures 1 and 2 and is identical to the phase 
diagram for q = 3 (cf [8]). A brief discussion of results (section 4) concludes the report. 

2. The phase diagram construction 

2.1.  The model 

Let us consider the simple cubic lattice Z3 with base vectors e l ,  e2,  e3 being the edges of 
acube. In every lattice point, spin can assume values 0, 1,2,  . . . , q - 1. The Hamiltonian 
is 

q-1  3 

with the second summation over next nearest neighbours (NNN). Here P i  is the projection 
on the spin value i at the lattice point a : Pd(X)  = 1 if X, = i, zero otherwise. Both J 1  
and J 2  are positive. The first term in (2.1) is the chiral interaction (cf [ 3 ] ) ,  while the 
second one is the ferromagnetic coupling. The Hamiltonian (2.1) isinvariant with respect 
to rotations about the (1, 1, 1) axis and to uniform spin rotations: X, + X ,  + m (mod 4) .  
It is not invariant with respect to reflections in any lattice plane perpendicular to (1, 1,l). 
Any such plane will be called a layer. Layers will be numbered in the order of their 
appearance, starting from the origin. 

2.2.  Ground states 

Ground states of the model can be easily found if one defines new interactions Q A ,  Q1: 
9 - 1  

@A,J , ,Jz  = (pkpi::i'p+',, + pi+e+',,ph:ik+e,) - 4J2PkPh+ek+el] (2.2a) 
f = 1  

where k # j; k ,  j = 1 , 2 , 3 ,  and 

Then 

(2.26) 

with the second summation over all NNN pairs lying in the same layer. Values of @ A  for 
various configurations on a triangle {a ,  a + ek,  a + ek + e,, j # k} are the following (we 
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fix Xa = 07 Xa+e, = X a + e k + e ,  = k ) :  

k = 0 , m = 1 , q - 1 : - ( J l + J 2 ) / 4  k = 2 ,  m # l :  0 

k = 0 ,  m # 1, q - 1: -J1/4 

k = 2 , m  = 1: -J1/4 

For configurations with X ,  # 0 use the spin rotation. Obviously (2.2) is equivalent to the 
original interaction, so it has the same ground states. They are the following: 

k # 0 , 2 , m =  l , k -  1: -J1/4 
k f  0 ,  2 , m  # 1 ,  k - 1 :  0. 

(i) Throughout any fixed layer, values of spins are the same. 
(ii) If J1 > J z ,  then in any three consecutive layers L,-l, L,, L,+l spin values are 

m - 1, m, m + 1 (mod 4 ) .  We say in short that L, is the o layer. 
(iii) If J1 < J z ,  then spin values in L,, L,+l are m, m + 1, m (mod q )  (the a 

layer) or m, m - 1 ,  m (mod q )  (the /3 layer). 
(iv) If J1 = J z ,  then any of the above configurations on triples of layers is allowed, 

with obvious restrictions that the a layer has to be followed by the p layer while o and p 
layers cannot be followed by the /3 layer. 

The most interesting situation occurs close to the multiphase point J1 = J z .  To study 
this region we split the Hamiltonian (2 .1)  into H O  = H ( J 1  = J 2 )  and the perturbation L: 

3 q-1 

a k=l r = O  
L = - 6 c. E E P;P:::,hk 6 = J1 - J2. (2.4) 

Each ground state of H o  (which from now on will be referred to as the ground state) 
can be uniquely described by its value in the zeroth layer (Lo) and by a sequence of 
symbols a,  /3 or o defining types of consecutive layers. Ground states that differ only by 
the spin value at the origin are related by a symmetry of the Hamiltonian (a spin rotation) 
and can be identified, In the low-temperature expansion (LTE) technique we consider 
periodic ground states only which correspond to periodic sequences of symbols. The 
periodic repetition of the sequence A will be denoted by ( A ) .  

Example. The periodic repetition ( ~ $ 0 )  of the sequence @O defines q ground states. 
One of them is the periodic repetition of 01012123234 . . , ( q  - 2)(q  - l )O(q - 1). 

2.3. Structural variables 

Let G be a ground state and A any finite sequence of symbols CY, /3 or 0. In N consecutive 
layersA appears NA(G) = NIA(G) times (modulo boundary terms) as a sub-sequence of 
G. In the limit of infinite N, IA( G) is the density of A in G. Following [ 101 , it will be called 
astructural variable, Since G is periodic, iA(G) is well defined. 

Example. lapo((a/30)) = 113, l,po((a/3apoafio)) = 1/4. 

Structural variables satisfy structural relations: 

where lBl is the length of B ,  and AB denotesA followed by B. In particular, 

lD(G)  = 1 = l,(G) + lp(G) + lo(G). (2.6) 
Structural variables allow one to parametrise with G various quantities appearing in 
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the LTE technique. For example, let us consider the average energy per lattice site in the 
ground state G: 

ec = -3J2 - $(J1 + J,)[l,(G) + lp(G)] - 3Jl10(C). 

Using structural relations (2.6) one can rewrite the above in the form: 

e c ( 6 >  = e c ( 0 )  - j610(G) = const - $610(G). (2.7) 

2.4 .  The low-temperature expansion of the pressure 

Let G be a ground state. A spin configuration X i s  called an excitation of G if X differs 
from G in a finite number of lattice points, and 

E(X)  = C. [@'6.J,=Jz(xI) -@'6.J,=.12(G)I + C. [ @ L ( x )  -@L(G)I20 .  (2.8) 
A 

Since both 

conditions given by a ground state G: 

and QL attain their minima at G, the inequality is in fact strict. 
The main object in the LTE technique is the expansion of the pressure in boundary 

I 

P'(B,  6) = - ec(6) + ( 1 / ~ >  I: ~ C ( P S )  (2.9) 
I =  I 

where 1/B = k T ,  ec is given by (2.7) and E, is the sum of excitation energies (2.8). The 
construction of expansion coefficients n," has been thoroughly described elsewhere [ 111 
and it will be briefly reviewed in section 3.1. For further discussion it is important that 
each n f  can be written as a linear combination of structural variables [8, 101: 

(2.10) 

where al./.  is independent of G. The restriction on the length of sequences entering into 
(2.10) comes from the finiteness of the interaction range and from proposition 2 of 
section 3.1, 

Except for very specific cases [12], nothing is known about the convergence of the 
series (2.9). The standard procedure is to cut it at some term N and use truncated 
pressures p $  to construct the phase diagram in order N .  The truncated pressure p $  
corresponds to the phase G in which typical spin configurations are very close to the 
ground state C. The line of coexistence (in order N )  of phases G1 and G2 is the curve 
S ( B )  for which 

P $ W  W ) )  = P$2(B,  W)) 2 P%B? W)) (2.11) 

where G is any phase (ground state). Lines of coexistence separate the half-plane (6, r> 
into regions occupied by single phases. This constitutes the phase diagram in order N .  

Suppose that in order N we have found in the phase diagram r phases G1, . . . , Gr.  
For any other phase G there are two possibilities: 

(i) either at any point (6, T )  there exists a phase GI such that p $ ( p ,  6) < p$i(f?, 6 ) ;  

(ii) there exists a line S@) of coexistence of G, and G,+l such that 

What happens if we take some higher order N'? It can be shown that in case (i) there 

or 

~ g ( B 7  Si) P ~ ' ( B ,  Si). 
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exists inverse temperature p ( N ' ,  G) such that (i) remains valid in some neighbourhood 
of 6 = 0 for /3 > P(N' ,  G). Hence G will not appear in the phase diagram. In case (ii) 
the addition of new terms to p$ may cause G to show up in some region of non-zero 
width. In general, coexistence lines of order "ay split in higher orders and new phases 
appear. 

2.5. The phase diagram in first order 

In zero order, one compares ground-state energies (2.7). For 6 > 0, ground states with 
lo( G) = 1 dominate. This condition defines (0 )  (0 layers only). For 6 < 0 one has lo( G) = 
0, which defines <cup). All other ground states coexist at 6 = 0 (cf section 2.2). 

In first order we compare quantities 

py (p ,  6) = &%,(G) + (1/P)nP(PG) e-PEI. 

The coefficient n? consists of contributions from lowest-energy excitations (of any 
ground state). According to the results of section 3.1, these have to be single spin 
excitations, Using the block technique described in section 3.2, one finds that the lowest 
energy corresponds to particular excitations of sequences cup0 or ocup (cf table 1) with 
energy E ,  = 3J2. Hence 

pF(p ,  6 )  = W o ( G )  + (l/b)[l,po(G) + lonp(G)l e-'OJ2. (2.12) 

The above expression is an affine functional in variable 6 with a temperature-depen- 
dent free term. The phase diagram for such functionals is given by the following 
algorithm [8]. One constructs the convex envelope for a set {310(G)/2, (l/@)nF(pG) 
exp(-3PJ2)}. Then: (i) maximal extremal points correspond to phases that appear in 
the zero or first order; (ii) points lying on a maximal extremal edge correspond to 
phases that are on a coexistence line; (iii) points inside the convex envelope define 
phases that do not appear in the phase diagram. 

In first order there are three maximal extremal points: (0,O) corresponding to (cup), 
(1/2, (2/3p) exp(-3PJ2)) corresponding to (apo) and ( 1 , O )  corresponding to (0).  The 
coexistence line between (cup) and (~$0) is given by the solution of 

0 = ppp)((p, 6) = pppo) (@,  6 )  = I 6  + (2/3p) e-3bJ2 

that is, 6 = - (4/3@) exp(-3pJ2). Phases that coexist at this line satisfy the condition 

-(2/@) e-3OJ2 l o ( ~ ) + ( 1 / @ )  e-3PJz[l,po(G)+lolyP(G)] = 0. (2.13) 

Using structural relations (2.5) we show that 

lo(G) = l o o ( G )  + l a o ( G )  + i p o ( G )  = l o o ( G )  + L p o ( G )  

= lo(G) + lOcr(G) + l o p ( G )  = Lo(G> + l o n p ( G )  
(2.14) 

since sequences OB, ao, oao, opo are not allowed. Combining (2.13) with (2.14) we get 
the condition loo(G) = 0. It defines phases that can be written in the form 

((cupo)~~(cu@)'~(cupo)~~(cup)'~, . , ) (2.15) 

The coexistence line between (@o) and (0) is 6 = (4/3p) exp(-3@J2). Phases that 

( ( c u p o ) ~ ~ o ~ ~ ( c u p o ) ~ ~ o ' 2 .  . .). (2.16) 

withp,, r, 3 1 i fp , ,  r1 3 1. 

coexist at this line satisfy the condition l,p,(G) = lpap(G) = 0 and thus have the form 
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2 .6 .  The splitting of coexistence lines: general argument 

In orders higher than one we can restrict our discussion to small neighbourhoods 
of coexistence lines. The form (2.15) and (2.16) of phases that coexist at respective 
boundaries in order one suggests that we use the general inductive algorithm described 
in [8]. We recapitulate here briefly the main points of the scheme. The inductive step 
looks as follows. 

Suppose that we have afamily of phases that coexist at some boundary 6,@) defined 
in order N ' .  Let each member of this family have the form 

(AP1(AUB)'1AP2(AuB)'2) p , ,  r, a 1 if p l ,  r1  2 1 (2.17) 

where U is fixed (possibly zero). We define the common core C as the longest common 
sub-sequence of (A)  and (A"@. Obviously C is the longest sequence that appears in all 
forms (2.17), and it contains A" as the sub-sequence. In the following we will use 
sequences pCv ,  p ,  v = CY, @, 0 ,  and theirproper extensions: M is an extension of M' if it 
contains M' as a sub-sequence, and M is a proper extension of M'  if lM(G) = 1,,(G) for 
any form (2.17). Let N be the lowest order in which any of the discussed extensions 
appear in (2.10), and S,(P) be the boundary between (A)  and (A"B) in this order. We 
make the following assumptions: 

(i) For all ground states (2.17), lAU+'(G) and lAuB(G) can be written as linear com- 
binations of 1,(G) and a constant. Then l,(G) can also be represented in the same way 
unless M is an extension of pCv ,  p ,  v = 0 ,  CY, P (cf [SI). 

(ii) If an extension M is not a proper extension of p C v ,  ,U, v = 0 ,  CY, P ,  then lM(C) 
does not appear in (2.10) for all orders N' C N .  This assumption is a softer version of 
condition 1 of [8] , and it holds by proposition 2 (section 3.1) and also by the argument 
at the end of section 3.3. 

Next we define 

a,(PS) = E a,.,(P4 - E a N , M ' - ( @ Q  (2.18) 

where a,,,, are defined by (2.10), M is a proper extension of oCo, aCn ,  CYCP, PCa or 
PCP, and M' is a proper extension of o c a ,  oCP, aCo or PCo. With these assumptions 
and definitions we have the following result (theorem 2 of [8]). 

Theorem. (i) If a,(PS,(P)) > 0, then no phase (2.17) other than (A)  and (A"B) appears 
in the phase diagram. 

(ii) If aN(/3S,(P)) < 0, then the boundary between ( A )  and (A"B) is unstable, with 
the new phase (AU+lB) appearing at its locus. In addition: 

(a) Phases that coexist at the boundary between (A)  and (AU+lB) satisfy the 
condition: lBAUB(G) = 0, i.e. G = (AP1(AU+'B)'I. . .). Moreover, lAu+2(G) and 
IAU+IB(G) can be written as linear combinations of lo(G) and a constant. 

(b) Phases that coexist at the boundary between (AU+'@ and (A"B) satisfy the 
condition: lAu+z(G) = 0, i.e. G = ((BA")Pl(BA"+')'1. . .). Moreover, lBAUBAU(G) and 
lBAU+l(G) can be written as linear combinations of l0(G) and a constant. 

Remark. The boundary S,(p) between phases (A)  and (A"B) is the solution of (2.11) 
and hence has the form of the series in {exp(-PE,)}. Owing to the results of section 2.5, 
the free term of this series is zero. Hence the sign of aN(/3S,(p)) for large j3 is determined 
by the sign of aN(0). 

M M '  
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2.7. The coexistence line between (cup) and (~$0) 

In this section we apply the results of section 2.6 to the boundary between (ab) and 
(apo). First let us check that the set of ground states (2.15) indeed satisfies all conditions. 
HereA = cup, B = @Po, U = 0, C = a/3. Because of (2.5) and (2.14), 

lefio(G) = I,(G) lA2(G) = lepap(G) = 2 - ilo(G). 
Proper extensions that enter into (2.18) are: /3a/3a, a/3a/3a7 papap, a/3a/3ap (exten- 
sions of papa), oapa, oa/3c$ (extensions of oapa),  pepo, apapo (extensions of 
/3a/30) and oaUgo. To find whether the borderline between ((up) and (ago) splits in some 
higher order N, one has to find aN.  This is done in general terms in section 3.3. We note 
here that order one may serve as a starting point for the inductive argument. 

More generally, let us assume that both sequences A and B entering into (2.17) 
consist of blocks apo and ap. Then the common core has one of the forms: 

C = (a/3)mlo(ap)m20. . . o(ap)"l (s 5 2) or C = ( ~ $ 3 ) ~ .  (2.19) 

This sequence can be extended only by pCn,  pCo, oca and oCo. In section 3.3 we show 
that the lowest order Nin which any of these (or their extensions) appear in the coefficient 
n$ (cf (2.10)) corresponds to the energy 

Hence for large p part (ii) of the theorem applies. Obviously families of phases that 
coexist at new borderlines also fall in the pattern described above. Thus we arrive at the 
inductive scheme, which allows us to describe qualitatively the phase diagram in the 
neighbourhood of the coexistence line (ap)-(apo). It looks as follows (figure 1). In 
order E(ll = 10J2 (s = 1, m = 1) ((~$)~o) appears between (ap) and (apo). Next, ( (o$)~o)  
show~up inorde rE(~)  = 15J2(s = 1 , m  = 2) between(a/3)and((ap)20),and(apo(a/3)20) 
separates (apo) and ( ( c Y / ~ ) ~ o )  in order E( l , l )  = 20J2 (s = 2, m l  = m2 = 1) .  In general, 
each coexistence line appearing in some order N bifurcates into two curves in some 
higher order, as shown schematically in figure 2. 

2.8. The coexistence line between (apo) and (0) 

It is not hard to check that the set of ground states (2.16) satisfies the conditions of the 

Figure 1. The phase diagram for the model. The 
shaded region is filled by the bifurcating cascade 
of phases arranged in the manner shown in figure 
2. Phase domains are not to scale. 
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Figure 2. The schematic representation of the bifurcating structure for 6 < 0. The scheme is 
continued in the way shown at the right part of the drawing. 

theorem. HereA = 0, B = aP0, U = 0 ,  C = 0. Relevant extensionsof Care: Boa, a/3oa, 
pea/?, apoa/3, Boo, ooa, 000. In section 3.4 we show that the least relevant energy is 
E 2  = 612 and a2(0) = -3 (if q # 4) or a2(0) = -2 (if q = 4). Hence for large /3, part (ii) 
of the theorem applies. The new phase (a/300) appears between (ape) and (0) .  

The coexistence line (apo)-(apoo). Following the inductive pattern with A = apo, B = 
0, U = 1, C = oapo we have to investigate excitations of proper extensions of ooapoo, 
poapoo, ooapoa and Boapoa. This is done in section 3.4. The first relevant order n ,  
in which any of these extensions enters into (2. lo), corresponds to E,, = 29J2/2 ( q  f 4) 
or E,, = 10J2 (q  = 4). Here a,(O) = 6 ( q  # 4), a,,(O) = 9 ( q  = 4). Hence no new phases 
appear. 

The coexistence line (a/3oo)-(o). Here A = 0, B = oap, U = 1, C = 00. In order n with 
E,, = 21J2/2 we find a,,(O) = 6 (cf section 3.4). Hence for large p part (i) of the theorem 
applies and no new phases appear. 

The phase diagram for 6 > 0 contains three phases only: the low-temperature (0) 
phase, the (ape) phase, which occupies the region of small S ,  and the intermediate 
(apoo) phase ( figure 1). 

3. Technical details 

3.1. Excitations of a sequence: general remarks 

In this and the following sections we will calculate some of the coefficients a,,,(BS) that 
appear in front of the structural variables in (2.10). We will restrict our attention to those 
orders n and sequences A which are important to the preceding discussion. 

Let A be of length m, that is it describes the ground-state configuration in m con- 
secutive layers, say L,, L,, . . . , L,-l. The coefficient a,,.A(/3S) is constructed in the 
following way. One takes any finite connected set A of lattice points such that: (i) if b 
belongs to A or spin at b interacts with any spin in A, then b is in one of the layers 
Lo, , . . , L,,-l; (ii) any shorter sequence of layers does not satisfy (i). Here the set is 
connected if one can pass from one of its points to another by NN or NNN bonds. Next 
one divides A intop possibly overlapping subsets A I ,  . . . , Ap,  A = A1 U . . . U Ap.  Let 
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X, be an excitation differing from G in A,. Any such family of excitations XI,  . . . , X,, 
will be referred to as an excitation of the sequence A .  If p > 1, then we will call it 
energetically disconnected. Finally we require that E ( X , )  + E(X,)  + . , . + E(X,,) = E,,. 
The contribution of the family to an,A is (-l)’-’rexp{-@G[L(X,) + L ( X 2 )  + . . . + 
L ( X J ] } ,  where the factor is positive and equal to one if no two excitations X , ,  X ,  are 
identical [ 131. 

In the preceding discussion we needed coefficients am.A for the lowest order n in 
which an.A is non-zero. Hence we face the task of finding the lowest energy excitations 
of a given sequence A .  Such configurations cannot have too many excited spins, which 
is shown in the following. 

Let X be an excitation of A .  Points where X differs from the ground-state con- 
figuration defined by A are excited points. A subset of the lattice (a layer, a triangle, a 
NNN bond) is excited if it contains excited points. If at most one point in each layer is 
excited, then such a configuration is called a linear chain. 

Proposition 1. If X is not a linear chain, then there exists a linear chain Y with the same 
excited layers and such that E ( X )  > E( Y ) .  

Proposition 2. Let X and Y be linear chains such that Y is obtained from X by exciting 
an additional layer. Then E ( Y )  > E(X) .  

Proofs of propositions 1 and 2 are based on the straightforward but cumbersome 
inspection of possibilities and have been omitted. 

Proposition 2 first provides the weaker version of condition 1 of [8], which is sufficient 
for the application of the theorem of section 2.6. Secondly, it allows one to disregard 
linear chains in which more than two consecutive layers are excited. Hence the minimal 
energy linear chain has to be built of single-spin and two-”-spin blocks. The construction 
of chains out of such blocks is described in the next section. 

3.2. The energy of a linear chain 

Let B be a block consisting of a single spin or two NN spins. The energy EB of block B is 
calculated as follows. One takes all NN and NNN bonds that contain points of B as the 
only excited points. Only two NNN inter-layer bonds are excluded, since they may serve 
as connections between two neighbouring blocks. Then one calculates for each bond the 
difference in the interaction value when (i) the block is excited, (ii) the configuration on 
the block is a ground state. The block energies for various block configurations are given 
in table 1. One should note that a two-spin block can be energetically discounted, so 
there are two possible block energies in this case. In table 1 the lower value is given, and 
the sign (d) means that it corresponds to the disconnected block. 

Blocks are connected by the NNN bonds. Energies Ec of bonds are provided in table 
2. These bonds alsocan be energetically disconnected, and bothvalues are given. Finally, 
blocks located at ends of a chain have the endpoint energy EE.  Values of these are also 
listed in table 2. 

To find the energy of a linear chain, one adds contributions from blocks E B ,  bonds 
Ec and endpoints EE.  
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Table 1. Blocks. 

Block Excitation Energy Block Excitation Energy 

cupn 
01010 

4 0  
01012 

Po0 
10123 

000 

01234 
( 4  f 4) 

01210 
OlrlO 

01212 
Olr12 

10323 
10r23 

01034 
01434 

PaP 

0a;a 

10101 

01212 

oocu 
01232 

P O @  
10121 

1O(p - 1)Ol 
10101 

01012 
Olr12 

01032 
Olr32 

lor21 

Olr34 
01030 01230 

(4  = 4) 
Olr30 

012(p - 1)Ol 
012r01 
Olr(p - 1 ) O l  
Olr(r + 1)Ol 
OlrsOl 

1O(p - 1)212 
lor212 
1O(p - l)r12 
10r(r + 1)12 
10rs12 

012323 
01r323 
012r23 
Olr(r + 1)23 
Olrs23 

012321 
012r21 
Olr(r + 1)21 
Olrs21 

cup4 
010101 

P 4 f f  
101010 

1O(p - 1)210 
1O(p - l)r10 
lor210 
10r(r + 1)lO 
lOrsl0 

P@PO 
101012 

0LYpLY 

012121 
010321 
010r21 
Olr321 
Olr(r + 
Olrs21 

1 

cup00 

010123 
oocup 
012323 

010123 
010r23 
Olr123 
Olr(r + 1)23 
Olrs23 

1O(p - 1)012 
101012 
10r(r + 1)12 
10rs12 

ffp0lY 

010121 
PoffP 
101212 

ocupo 
012123 

0101323 
010r23 
01r323 
Olr(r + 1)23 
0 1 rs23 

poocu 
101232 

103432 
103132 
103r32 
101032 
1O(p - 1)032 
10r(r + 1)32 
10rs32 

010143 
Olr143 

103434 
103r34 

Po00 

(4  f 4) 
101234 

ooocu 
012343 
( 9  f 4) 

lor434 
10r(r + 1)34 
10rs34 
103030 

6 1 2  + 11Jl 
7J2 + 10.7, 
7J2 + llJ, 
3J2 + 1OJl 

010r43 
Olr(r + 1)43 
Olrs43 
010103 

6 1 2  + llJl 

7J2 + l O J l  

7J2+ 11JI 
3J2 + lOJ i  101230 

( 9  = 4) 
012303 
( 9  = 4) 

101030 9J2 + 11Jl Olr103 8JZ + llJl 



Lo w-temperature phase diagram for the q-state Potts model 8609 

Table 1. (continued) 

Block Excitation Energy Block Excitation Energy 

0000 010145 
012345 010545 

014145 
(4  f 4) 

014545 
Olr145 
010r45 
014r45 
Olr45 

% J 2  + 10Jl 
4J2 + l lJ ,  

3Jz + 11Jl 

$ J z  + 10Jl 
%J2 + 11J, 
5J2 + 11Jl 
% J 2  + 11Jl 
5J2 + llJl 

0000 Olr(r + 1)45 6 J 2  + lOJ, 
Olrs45 6J2 + llJl 

012301 010101 3J2 + lOJ, 
(4 = 4) 

OlOrOl HJ2 + llJl 
OlrlOl $ J 2  + llJl 
Olr(r + 1)Ol 6 J 2  + lOJ, 
O h 0 1  6J2 + l l J l  

3.3. The completion of the inductive argument 

In this section we will construct the coefficient aN(0)  (cf (2.18)) for the arbitrary inductive 
step of section 2.7. The situation is as follows. The common core has the form (2.19) and 
we have to find the lowest energy excitation of (proper extensions) of BCa, gC0, Oca 
or OCO. By preceding sections, we may restrict attention to linear chains built of single- 
spin and two-NN-spin blocks. For each block we choose the spin configuration with least 
block energy. As a closer look at table 1 shows, such configurations can always be fitted 
to one another so that the resulting NNN bond has least energy. We will use the following 
notation for block and bond configurations with minimal energy ( E B ,  Ec are calculated 
forJ l  = J 2  = 1 ) :  

(i) Blocks. a:  spa, pap, E, = 5 ;  6: apo, oap, Eb = 3; d:  poa, Ed = 11; x + :  agag, 
E,+ = 10; X - :  pa;Oa, E,- = 11 (d); y :  ~ L U ~ O ,  O L Y ~ C Y ,  Ey = 9 (d); Z :  a/30a, poap, E, = 
12; W :  oapo, E, = 7 (d). 

(ii) Bonds. a, p: E,  = E p  = 0;  0:  E ,  = - 1  (disconnected). 
(iii) Endpoints. E+,  E-  denote the energy of the right, left endpoint respectively. 

Let n, be the number of blocks aga and gag, nb of blocks ago and oap, etc. The 
total energy of a linear chain X i s  

E ( X )  = 5n, + 3nb + l l n d  + 10n,+ + l ln , -  + 9n, + 12n, 

+ 7n ,  - no + E f  + E - .  (3.1) 

Table 2. Bonds and endpoints. Excited layers are underlined. Two energy values for bonds 
correspond to the energetically connected and disconnected NNN bond. 

Connection Excitation Energy Endpoint Excitation Energy 
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If X is an excitation of a sequence A ,  then 

lAl = 1 + 2(n ,  + nb + E d )  + 3(n,+ + n , y -  + + nw). (3.2) 

After solving (3 .2)  for no and substituting into (3 ,1)7  the expression for E ( X )  can be 
rewritten as 

2E(X)  = 5 ( l A /  -1) + 2(E+ f E - )  - 4(nb + n,) + 7(n,- f n y )  - 2n, 

+ 12n, + 5n,+ + 9n, - a,. (3.3) 
If C # (cup)", then each extension A of /3Ccu, oca, pCo or oCo consists of segments of 
the type o(cu/?>"o, and it may contain segments o(cu@)", o(cup)"a and the symmetrical 
ones. If C =  CY/^)^', then A may be any of the above sequences in addition to (cup)", 
(PLY)", rC;(cup)" and (aB)"cu. Let X A  be the linear chain that inside each segment looks 
as follows (excited layers are underlined, and each block is in its minimal energy excited 
configuration): 

o(cu/3)"0: 

O(LYp)": 

(a@) mO : similarly; 

o( cup)"cu: 
/?(ap)"'o: similarly; 

ocu/3@& . . . &&cu&x@o, block x- disconnected; 

o@&& . . . &&aJhJ7 no two-spin blocks; 

OM@& . . . &&cuficu, block x- disconnected; 

(cub)": cu@cu@LYfl. . . cupcuBcup; 

( 0 4 " :  
B ( d 9 " :  
a(pa)": similarly. 

p&&g . . . /3&cuficu7 block x- disconnected; 

p&@. . . /3&&7 no two-spin blocks; 

The position of the block x- is arbitrary (it can be replaced by the block y ) .  All LY and p 
bonds are energetically connected, while blocks in adjacent segments are joined by 
energetically disconnected o bonds. 

Proposition 3. X A  is the lowest energy excitation of A .  

Proof. First weconsiderthecase C f (cup)". LetXbe anexcitationofA. By theargument 
of section 3.1, we can assume that X is a linear chain. Let us write E ( X )  - E ( X A )  as 
the sum over segments: 

E ( X )  E(XA)  = C. AE, .  
U 

To AEu contribute blocks that lie inside the segment, with an exception that blocks 
d and z and the bond o contribute one half of their energies to each segment containing 
the o layer. If O(cup>"o is not at the end of A ,  then 

( 3 . 4 ~ )  

(3.4b) 
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For segments at the right end of A we have (similarly for the left end): 

2AEo,,g)nio = 4(2 - nb - n y )  + 7(n,- + ny  - 1) + (1 - n,) 

+ 5n,+ t 6nCi + Pn, + (E+  - 8 )  (m f 1) (3.4c) 

2AE,,,, = - 4nb + (1 - n,) + (1 - n o )  + 5 n x +  + 6nd + i n ,  + (E' - 8 )  (3.4d) 

2AE0,,g)m = 4(1 - nb - ay)  + 7(n,- + n y )  + (1 - n o )  + 5n,+ + 6nd 

+ $ n ,  + (E' - 8 )  (3.4e) 

2AE,(,p)nl, = 4(1 - nb - n y )  + 7(n,- + nL - 1) + (1 - n o )  + 5n,- + 6nd 

+ Pn, + (E' - 8).  ( 3 . 4 f )  

We want to show that if Xdiffers from X, in any segment 0, then AE, > 0. First, let us 
look at o(a/3)"0 for m # 1. Then there are no blocks w. Note that since X is spatially 
connected, either the o layer or one of adjacent a,  /3 layers has to be excited. Hence 
nd + n, + nb + ny = 2. Furthermore, either the o layer is excited or there is the o bond: 
no + n d  + n, = 2. Finally note that there must be at least one two-spin block, i.e. 
n,+ + n,- + ny + n, 3 1. Simple geometric argument shows that each blockx' has to be 
accompanied by two other two-spin blocks. With these conditions taken into account, 
AE, z- 3if n,+ + n, + nd # 0. Furthermore, AE, 2 Sunless n, + n,- = 1. This describes 
X, inside o(aB)"o. For segments o(ap)"o ( m  # 1) and o(ap)"a at the end of a chain, 
a similar argument holds with the exception that n, + nd + n, = 1, and for o(a/3)"a we 
have nb + ny + n, + nd = 1. Here also AE, 

For m = 1 we have n,+ = U,_  = ny = 0 and n, + n d  + n, = 2. If n, = 0, then I td  = 
1 = n, + nd, and AE, 2 2. Hence n, = 1, which excludes any other block and defines 
X, inside oapo. Exactly the same argument holds if oapo is at the end of a chain except 
that n, + nd + n, = 1 in this case. Here also AE, 2 2. 

For the segment o(a/3)" we have: no + nd + n, = 1, nb + ny + n, + n d  = 1. Since 
two-spin blocks are not obligatory in this case, AE, 2 $ unless ny = n, = nd = n,+ = 
n,- = 0 and nb = n, = 1. 

Now let C = (ap)". The above discussion can be applied to extensions with at least 
one o layer, so is enough to consider sequences with no o layers. Since in this case only 
n,, n,- and n x +  are not equal to zero, (3 .3)  reduces to 2E(X) = const + 5n,+ + 7n,-. 
Next note that: (i) if A = (a/3)", then there has to be at least one block x'; (ii) if A = 
(pa)", then at least one blockx- is needed; (iii) ifA = a(pa)" or /3(ap)", then no two- 
spin blocks are necessary. This concludes the proof. 

3. 

Out of common core extensions, only a few need to be considered. Let us take an 
extension A of pCa. If A contains but is not equal to apCa/3, then X ,  can be obtained 
from XmgCap, XPcmp, XEPc, or Xpca by exciting an additional layer. By proposition 2 ,  
E(XA) is greater than the energy of the corresponding shorter chain. Hence A can 
be disregarded. A similar argument holds for other extensions of C. The remaining 
sequences and corresponding minimal excitation energies are as follows. a/3Ca/3: K + 4 
(C # (a/3)"),K + 1O(C = (aP)");apCa,pCap: K + 5;PCa: K + 6;pCo,oCa: K + 3; 
a/Ko,  oCa/3: K + 2 ;  oCo: K ;  K = 5 Z;=,m, + s. Thus the minimal energy is 

S 

i= 1 
(3.5) 
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There are m1m2.  . . m, different forms of Xoco, corresponding to various locations of 
blocks x- or y inside each segment. All forms consist of 2s energetically disconnected 
non-identical components. Hence 

a N ( 0 )  = ( - 1 ) & - ' m 1 m 2 . .  . m,. (3.6) 

The above argument provides additional information that extensions of C that are 
not proper extensionsof BCa, ~ C O ,  oCaor  oCo can be disregarded. This is the sufficient 
condition for the application of the theorem of section 2.7 since it allows one to write 
the coefficient a N ( p S )  in the form (2.18). Otherwise one would have to include in (2.18) 
extensions that are not proper, and the whole argument could break down [8]. 

3.4.  The form of coeficients a,  for the boundary between (aflo) and (0) 

In this section we calculate the coefficients a, that are relevant to the discussion of section 
2.8. Since propositions 1 and 2 also hold here, we can use the block technique described 
in section 3.2. For each case, we write down extensions of a common core and the energy 
(in unitsJ1 = J 2  = 1) of the corresponding minimal energy linear chain. In several cases 
the energies for q f 4 and q = 4 are different; the value for q = 4 is in parentheses. 
Excited layers are underlined. Extensions that are not listed may be disregarded (cf the 
discussion at the end of the preceding section). 

The boundary (apot (o ) .  The common core is C = 0.  

0 ~ 0 , 1 5 / 2  (6); ooa, Boo, 17/2; a@o&, 6 (d). 

The minimal energy is E2 = 6, a2(0) = -3 (q  # 4), a2(0) = -2 (q  = 4). 

The boundary (apoo)-(o). The common core is C = 00. 

0-0, 13 (10); OQOQO, 15 (q  # 3,4) ,  29/2 ( q  = 3), 12 (q  = 4); o-a, p-0, 29/2; 
OQO&, a,@o~o,  21/2 (10); pooa, 17; a@ooa, Boo&, 12. 

The minimal energy is E, = 21/2 ( q  # 4), for the disconnected excitation of apooo or 
oooap, and E, = 10 ( q  = 4) for excitations as for q # 4 and the connected excitation of 
0000. Hence a,(O) = 6 (q  # 4), a,(O) = 9 (q  = 4). 

The boundary (apo)-(a$oo). The common core is C = 00. 

ooa&o, ooafioo, 37/2; OQO&QO, OQ~,@OQO, 19 (35/2); ~O&QO, ooa&a, 21; 
p ~ a & o ,  ooa/30a7 43/2 (21) a@o&oo, ooa,@o&, 29/2 (14); p@oa, &@&a, 24; 
a,@oc&a, poa,@o&, 17; ooa@ooa, /3oo&oo, 41/2 (20); ooo&oa, /3oafio~o, 43/2 
(20); p ~ o & ~ a ,  @a@ooa, 23. 

The minimal energy is E,, = 29/2 (q  # 4) or E, = 14 (q  = 4) for the disconnected exci- 
tation (NNN pair O&QO and spin ago) of apoa/300 and the corresponding excitation of 
ooCUpoap. The contribution is -9, hence a,(O) = 18. 

4. Conclusions 

In this paper we have shown that the q-state Potts model with the next-nearest-neighbour 
interaction has an infinite set of phases. This result has been obtained by the LTE 
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technique, which at best provides for an asymptotic (with T+ 0) form of the phase 
diagram. For systems with an infinite set of ground states it may happen that this 
approach is valid only for T = 0! The reason for this has been briefly discussed in section 
2.4: if the phase G is not present in the phase diagram in some order N ,  then it will not 
appear in order N’ > N only if the inverse temperature exceeds some /3(N’, G). To 
exclude in order N’ all phases that do not show up in order N has to lower the temperature 
to inf{l/P(N’, G), G}. For systems with an infinite number of ground states this infimum 
may be zero. The extension of results to non-zero temperatures has in such cases no 
clear meaning. Therefore other methods should be applied to check the form of the 
phase diagram. The rigorous analysis of the model remains an open question. 

The structure of the phase diagram has the form of the complete Devil’s staircase, 
in contrast to the incomplete Devil’s staircase found in the ANNNI and the three-state cc 
models. The important difference here is the type of interaction anisotropy. In our 
model each N N  bond is ordered and bonds are located isotropically in the lattice. Similar 
ordering of bonds occurs in the q-state cc model, but in addition bonds are not isotropic 
in the lattice. In the ANNNI model, the interaction is competitive in one direction and 
strictly ferromagnetic in the remaining two. The question is whether the anisotropy of 
the bond location influences the phase diagram structure. The positive answer seems to 
be supported by the renormalisation group studies of the three-state cc model [3]. 

Acknowledgments 

This work has been supported in part by The Institute of Low Temperatures and 
Structural Research of the Polish Academy of Sciences from the resources of the Central 
Programme for Fundamental Research: ‘Structure, phase transitions and properties of 
molecular systems and the condensed phase’. 

References 

[ l ]  Elliott R J 1961 Phys. Rev .  124 346 
[2]  Selke W 1988 Phys. Rep. 4 213 
[3] Huse D A 1981 Phys. Reu. B 24 5180 
[4] Ostlund S 1981 Phys. Rev .  B 24 3985 
[5] Uimin G 1984 J .  Stat. Phys. 34 1 
[6] Yeomans J M and Fisher M E 1984 Physica 127A 1 
[7] Yeomans J M 1982 J .  Phys. C: Solid State Phys. 15 7305 
[8] Tarnawski M 1987J. Phys. A: Math. Gen.  20 6085 
[9] Tarnawski M 1989 J .  Phys.: Condens. Matter 1 1849 

[lo] Fisher M E and Selke W 1981 Phil. Trans. R. Soc. 302 1 
[ l l ]  Domb C 1960Adu. Phys. 9 149 
[12] Slawny J 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New 

[13] Galavotti G. Martin-Lof A and Miracle-Sole S 1971 Lecture Notes in Physics vol20 Statistical Mechanics 
York: Academic) 

and Mathematical Problems ed A Lenard. Battelle Seattle Rencontres (Berlin: Springer) p 162 


